Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Recent advances in submolecular resolution with scanning probe microscopy

An Erratum to this article was published on 23 May 2011

This article has been updated

Abstract

Recently scanning probe microscopy has made tremendous progress in imaging organic molecules with high lateral resolution. Atoms and bonds within individual molecules have been clearly resolved, indicating the exciting potential of this technique for studying molecular structures, bonding within and between molecules, molecular conformational changes and chemical reactions at the single-molecule level. It turns out that the key step enabling such studies is an atomically controlled functionalization of the microscope tip. In this Perspective, the different techniques used for high-resolution molecular imaging, their implementations, advantages and limitations are described, and possible scientific areas of applications are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecules imaged with atomic resolution using NC-AFM.
Figure 2: PTCDA monolayer imaged with STHM.
Figure 3: Pentacene imaged with STM and NC-AFM.
Figure 4: Measuring reaction rates with submolecular resolution.
Figure 5: NC-AFM with chemical sensitivity.

Similar content being viewed by others

Change history

  • 08 April 2011

    In the version of this Perspective originally published, the arrows in Fig. 5b were too short. This has now been corrected in the HTML and PDF versions.

References

  1. Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    Article  CAS  Google Scholar 

  2. Gross, L. et al. Organic structure determination using atomic resolution scanning probe microscopy. Nature Chem. 2, 821–825 (2010).

    Article  CAS  Google Scholar 

  3. Temirov, R., Soubatch, S., Neucheva, O., Lassise, A. & Tautz, F. A novel method achieving ultra-high geometrical resolution in scanning tunnelling microscopy. New J. Phys. 10, 053012 (2008).

    Article  Google Scholar 

  4. Weiss, C. et al. Imaging Pauli repulsion in scanning tunneling microscopy. Phys. Rev. Lett. 105, 086103 (2010).

    Article  CAS  Google Scholar 

  5. Weiss, C., Wagner, C., Temirov, R. & Tautz, F. S. Direct imaging of intermolecular bonds in scanning tunneling microscopy. J. Am. Chem. Soc. 132, 11864–11865 (2010).

    Article  CAS  Google Scholar 

  6. Mohn, F. et al. Reversible bond formation in a gold-atom-organic-molecule complex as a molecular switch. Phys. Rev. Lett. 105, 266102 (2010).

    Article  Google Scholar 

  7. Loppacher, C. et al. Direct determination of the energy required to operate a single molecule switch. Phys. Rev. Lett. 90, 066107 (2003).

    Article  Google Scholar 

  8. Ternes M., Lutz, C. P., Hirjibehedin, C. F., Giessibl, F. J. & Heinrich, A. J. The force needed to move an atom on a surface. Science 319, 1066–1069 (2008).

    Article  CAS  Google Scholar 

  9. Repp, G., Meyer, G., Stojkovic, S. M., Gourdon, A. & Joachim, C. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005).

    Article  Google Scholar 

  10. Qiu, X. H., Nazin, G. V. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003).

    Article  CAS  Google Scholar 

  11. Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007).

    Article  CAS  Google Scholar 

  12. Gross, L. et al. Measuring the charge state of an adatom with noncontact atomic force microscopy. Science 324, 1428–1431 (2009).

    Article  CAS  Google Scholar 

  13. Kaiser, U., Schwarz, A. & Wiesendanger, R. Magnetic exchange force microscopy with atomic resolution. Nature 446, 522–525 (2007).

    Article  CAS  Google Scholar 

  14. Sugimoto, Y. et al. Chemical identification of individual surface atoms by atomic force microscopy. Nature 446, 64–67 (2007).

    Article  CAS  Google Scholar 

  15. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

    Article  CAS  Google Scholar 

  16. Bartels, L., Meyer, G. & Rieder, K-H. Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip. Phys. Rev. Lett. 79, 697–700 (1997).

    Article  CAS  Google Scholar 

  17. Eigler, D. M., Lutz, C. P. & Rudge, W. E. An atomic switch realized with the scanning tunnelling microscope. Nature 352, 600–603 (1991).

    Article  CAS  Google Scholar 

  18. Bartels, L., Meyer, G. & Rieder, K-H. Controlled vertical manipulation of single CO molecules with the scanning tunneling microscope: A route to chemical contrast. Appl. Phys. Lett. 71, 213–215 (1997).

    Article  CAS  Google Scholar 

  19. Jung, T. A., Schlittler, R. R., Gimzewski, J. K., Tang, H. & Joachim, C. Controlled room-temperature positioning of individual molecules: Molecular flexure and motion. Science 271, 181–184 (1996).

    Article  CAS  Google Scholar 

  20. Moresco, F. et al. Probing the different stages in contacting a single molecular wire. Phys. Rev. Lett. 91, 036601 (2003).

    Article  Google Scholar 

  21. Nazin, G. V., Qiu, X. H. & Ho, W. Visualization and spectroscopy of a metal–molecule–metal bridge. Science 302, 77–81 (2003).

    Article  CAS  Google Scholar 

  22. Moresco, F. et al. Recording intramolecular mechanics during the manipulation of a large molecule. Phys. Rev. Lett. 87, 08830 (2001).

    Article  Google Scholar 

  23. Keeling, D. L. et al. Bond breaking coupled with translation in rolling of covalently bound molecules. Phys. Rev. Lett. 94, 146104 (2005).

    Article  CAS  Google Scholar 

  24. Grill, L. Functionalized molecules studied by STM: motion, switching and reactivity. J. Phys. Condens. Matter 20, 053001 (2008).

    Article  Google Scholar 

  25. Lee, H. J. & Ho, W. Single-bond formation and characterization with a scanning tunneling microscope. Science 286, 1719–1722 (1999).

    Article  CAS  Google Scholar 

  26. Hla, S-W., Bartels, L., Meyer, G. & Rieder, K-H. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: Towards single molecule engineering, Phys. Rev. Lett. 85, 2777 (2000).

    Article  CAS  Google Scholar 

  27. Néel, N. et al. Controlled contact to a C60 molecule. Phys. Rev. Lett. 98, 065502 (2007).

    Article  Google Scholar 

  28. Lafferentz, L. et al. Conductance of a single conjugated polymer as a continuous function of its length. Science 323, 1193–1197 (2009).

    Article  CAS  Google Scholar 

  29. Sugimoto, Y. et al. Atom inlays performed at room temperature using atomic force microscopy. Nature Mater. 4, 156 (2005).

    Article  CAS  Google Scholar 

  30. Sugimoto, Y. et al. Complex patterning by vertical interchange atom manipulation using atomic force microscopy. Science 322, 413–417 (2008).

    Article  CAS  Google Scholar 

  31. Giessibl, F. J. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett. 73, 3956–3958 (1998); erratum: 74, 4070 (1999).

    Article  Google Scholar 

  32. Albrecht, T., Grütter, P., Horne, D. & Rugar, D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668–673 (1991).

    Article  Google Scholar 

  33. Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003).

    Article  CAS  Google Scholar 

  34. Moll, N., Gross, L., Mohn, F., Curioni, A. & Meyer, G. The mechanisms underlying the enhanced resolution of atomic force microscopy with functionalized tips. New. J. Phys. 12, 125020 (2010).

    Article  CAS  Google Scholar 

  35. Lu, X., Grobis, M., Khoo, K. H., Louie, S. G. & Crommie, M. F. Spatially mapping the spectral density of a single C60 molecule. Phys. Rev. Lett. 90, 096802 (2003).

    Article  Google Scholar 

  36. Cavar, E. et al. Fluorescence and phosphorescence from individual C60 molecules excited by local electron tunneling. Phys. Rev. Lett. 95, 196102 (2005).

    Article  Google Scholar 

  37. Wu, S. W., Ogawa, N. & Ho, W. Atomic-scale coupling of photons to single-molecule junctions. Science 312, 1362–1365 (2006).

    Article  CAS  Google Scholar 

  38. Wu, S. W. & Ho, W. Two-photon-induced hot-electron transfer to a single molecule in a scanning tunneling microscope. Phys. Rev. B 82, 085444 (2010).

    Article  Google Scholar 

  39. Heinrich, A. J., Gupta, J. A., Lutz, C. P. & Eigler, D. M. Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004).

    Article  CAS  Google Scholar 

  40. Tsukahara, N. et al. Adsorption-induced switching of magnetic anisotropy in a single iron(II) phthalocyanine molecule on an oxidized Cu(110) surface. Phys. Rev. Lett. 102, 167203 (2009).

    Article  Google Scholar 

  41. Loth, S., Etzkorn, M., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Measurement of fast electron spin relaxation times with atomic resolution. Science 329, 1628–1630 (2010).

    Article  CAS  Google Scholar 

  42. Mikaelian, G., Ogawa, N., Tu, X. W. & Ho, W. Atomic scale control of single molecule charging. J. Chem Phys. 124, 131101 (2006).

    Article  CAS  Google Scholar 

  43. Stipe, B. C., Rezaei, M. A. & Ho, W. Localization of inelastic tunneling and the determination of atomic-scale structure with chemical specificity. Phys. Rev. Lett. 82, 1724–1727 (1999).

    Article  CAS  Google Scholar 

  44. Pascual, J. I. et al. Adsorbate-substrate vibrational modes of benzene on Ag(110) resolved with scanning tunneling spectroscopy. Phys. Rev. Lett. 86, 1050–1053 (2001).

    Article  Google Scholar 

  45. Grobis, M. et al. Spatially dependent inelastic tunneling in a single metallofullerene. Phys. Rev. Lett. 94, 136802 (2005).

    Article  CAS  Google Scholar 

  46. Moresco, F. et al. Conformational changes of single molecules induced by scanning tunneling microscopy manipulation: A route to molecular switching. Phys. Rev. Lett. 86, 672–675 (2001).

    Article  CAS  Google Scholar 

  47. Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000).

    Article  CAS  Google Scholar 

  48. Heinze, S. et al. Real-space imaging of two-dimensional antiferromagnetism on the atomic scale. Science 288, 1805–1808 (2000).

    Article  CAS  Google Scholar 

  49. Iacovita, C. et al. Visualizing the spin of individual cobalt-phthalocyanine molecules. Phys. Rev. Lett. 101, 116602 (2008).

    Article  CAS  Google Scholar 

  50. Brede, M. et al. Spin- and energy-dependent tunneling through a single molecule with intramolecular spatial resolution. Phys. Rev. Lett 105, 047204 (2010).

    Article  Google Scholar 

  51. Chen, X. et al. Probing superexchange interaction in molecular magnets by spin-flip spectroscopy and microscopy. Phys. Rev. Lett. 101, 197208 (2008).

    Article  Google Scholar 

  52. Sader, J. E. & Jarvis, S. P. Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl. Phys. Lett. 84, 1801–1803 (2004).

    Article  CAS  Google Scholar 

  53. Baykara, M. Z., Schwendemann, T. C., Altman, E. I. & Schwarz, U. D. Three-dimensional atomic force microscopy — taking surface imaging to the next level. Adv. Mater. 22, 2838–2853 (2010).

    Article  CAS  Google Scholar 

  54. Guo, C-S., Van Hove, M. A., Zhang, R-Q. & Minot, C. Prospects for resolving chemical structure by atomic force microscopy: A first-principles study. Langmuir, 26, 16271–16277 (2010).

    Article  Google Scholar 

  55. Sugawara, Y., Uchihashi, T., Abe, M. & Morita, S. True atomic resolution imaging of surface structure and surface charge on the GaAs(110). Appl. Surf. Sci. 140, 371–375 (1999).

    Article  CAS  Google Scholar 

  56. Eguchi, T. et al. Imaging of all dangling bonds and their potential on the Ge/Si(105) surface by noncontact atomic force microscopy. Phys. Rev. Lett. 93, 266102 (2004).

    Article  CAS  Google Scholar 

  57. Enevoldsen, G. H., Glatzel, T., Christensen, M. C., Lauritsen, J. V. & Besenbacher, F. Atomic scale Kelvin probe force microscopy studies of the surface potential variations on the TiO2(110) surface. Phys. Rev. Lett. 100, 236104 (2008).

    Article  CAS  Google Scholar 

  58. Sadewasser, S. et al. New insights on atomic-resolution frequency-modulation Kelvin-probe force-microscopy imaging of semiconductors. Phys. Rev. Lett. 103, 266103 (2009).

    Article  Google Scholar 

  59. Bocquet, F., Nony, L., Loppacher, C. & Glatzel, T. Analytical approach to the local contact potential difference on (001) inonic surfaces: Implications for Kelvin probe force microscopy. Phys. Rev. B 78, 035410 (2008).

    Article  Google Scholar 

  60. Meyer, E. & Glatzel, T. Novel probes for molecular electronics. Science 324, 1397–1398 (2009).

    Article  CAS  Google Scholar 

  61. Likharev, K. K. Single-electron devices and their applications. IEEE Proc. 87, 606–632 (1999).

    Article  CAS  Google Scholar 

  62. Uchida, K. in Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices (ed. Waser, R.) Ch. 16 (Wiley, 2003).

    Google Scholar 

  63. Schmidt, R. et al. Probing the magnetic exchange forces of iron on the atomic scale. Nano Lett. 9, 200–204 (2009).

    Article  CAS  Google Scholar 

  64. Dediu, V. A., Hueso, L. E., Bergenti, I. & Taliani, C. Spin routes in organic semiconductors. Nature Mater. 8, 707–716 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank F. Mohn, N. Moll, G. Meyer, M. Jaspars, O. Custance and R. Allenspach for comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Gross.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, L. Recent advances in submolecular resolution with scanning probe microscopy. Nature Chem 3, 273–278 (2011). https://doi.org/10.1038/nchem.1008

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1008

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing